
FUW Trends in Science & Technology Journal, www.ftstjournal.com

e-ISSN: 24085162; p-ISSN: 20485170; December, 2020: Vol. 5 No. 3 pp. 905 – 909

905

 A SURVEY OF SOFTWARE ENGINEERING MODELS,

COMPARISONS AND SCENARIO OF PROJECTS

A. O. Adesina*, T. J. Odule, Q. A. Alatishe and O. A. Morafa
Department of Mathematical Sciences (Computer Science Unit), Olabisi Onabanjo University, Ago Iwoye, Nigeria

Received: July 13, 2020 Accepted: September 02, 2020

Abstract: The choice of appropriate model for the development of software product is a paramount factor in the field of

Software Engineering (SE). System development and system testing processes are carried as a part of SE phase.

The software process model is a format all activities carried out during the production of the software which

includes planning, organizing and running the project. A process activity model depicts events as well as

associated sequences though may hide functions of participants concerned. Accordingly, this paper reviews the

present opportunities in the process model with the view to recommend the appropriate model for a peculiar

software development project by making a survey and summarizing the existing software development life cycle

(SDLC) models.

Keywords: Software development, system life cycle, software development models, SDLC

Introduction

A systematic approach to the crafting of computer programs

represents software engineering, often a systematic collection

of past experience to solving a software developmental

process (Jalote, 2012; Mall, 2018). Software development

model is also referred to as Software Development Life Cycle

(SDLC) concept or Software Developmental Process

Representation. It describes an abstract structure representing

the totality of events during an application or a system

program developmental project spanning between preparation

and on-the-job support. SDLC has numerous representations,

with each having an assortment of events and responsibilities

(Akbar et al., 2017). Software development remains a tedious

process that demands correct documentation of system

interactions and needs, execution methods as well as program

installation. More so, the activity further goes to packaging

the suite of programs and appropriate support must be given

as at when required.

The product representations constitute numerous procedures

or techniques chosen for the design and implantation of the

job consequent upon its target and objectives (Joslin &

Müller, 2016). Numerous software developmental process

representations exist proposed to accomplish distinct requisite

intents. These representations determine the different phases

in product development as well as the request for handling

them. Fruitful programming teams need to find some kind of

harmony between rapidly conveying working programming

frameworks, fulfilling their partners, tending to potential

threats, while refining the applied methodology. This

necessitates an operational responsive system, i.e. models

which can absorb changes in implementation paradigm

(Jacobson et al., 2012; Jacobson & Stimson, 2017).

There are a wide range of application development models yet

each should incorporate four exercises deemed essential to

application designing:

1) Software specification – lists usefulness of the application

together with all activity-related restrictions well defined.

2) Software design and implementation – application that is

consistent with requirements should be delivered.

3) Software validation – proper certification of the

application to make it consistent with client expectation, and

4) Software evolution – application developed such that it

adapts to varying client requirements.

These application succession states may contain complex and

sub-complex events like certifying client specifications,

formulation of blueprint, individual component validation, etc.

Auxiliary method events like proper record-keeping as well as

tracking and controlling changes in the application, all exist.

Importance of software process models

Every software development organisation adheres to some

models which assist on what to do, how to do and when to do

it to avoid conflict and possible software development failure.

Some of the important software process models include:

i. Promotion of better communication among stakeholders.

ii. Production of better quality invention and documentation

standards.

iii. Assurance of user requirements should be fulfilled.

iv. Support for leader via offering of enhanced regulation of

job implementation, including a decline in total debt

budget.

v. Encourage understanding of the system through

standardization of process and documentation.

Stages of SDLC

There are six identifiable stages involved in the SDLC. They

are:

1. Requirement gathering and analysis: This stage is for

gathering trade requirements. It constitutes the main

interest area to both the project controllers as well as

associates. Specifications collated are scrutinized to ensure

legitimacy with the prospect of integrating such

requirements with the structure being modelled for

developmental purpose.

2. Design: This is where the software designer introduces the

approach for designing and testing every stage of the

software developmental process with emphasis on the part

of the system designed to be tested and how to be tested.

3. Implementation/coding: In this stage, the application is

shared into functionally independent parts where in real

programming start. This phase constitutes most important

and tasking phase for the programmer.

4. Software testing: This part checks the application structure

is test alongside practical necessities and requirements.

This is often achieved by feeding the application with data

while checking it for corresponding result. This checking

methodology guarantees adequate representation of

specifications by the software. Functional testing is a

value guarantee method, a sort of black-box test in which

the functionality of an application is tested without

looking at the internal code structure, implementation

details and knowledge of internal paths of the software

(Howden, 1987).

5. Software distribution: Once the application is decisively

debugged, it is conveyed/distributed for client utilisation

(Carzaniga et al., 1998). It includes installation,

configuration, testing and making changes to streamline

the presentation of the software (Dolstra, 2006).

Supported by

http://www.ftstjournal.com/

A Survey of Software Engineering Models

FUW Trends in Science & Technology Journal, www.ftstjournal.com

e-ISSN: 24085162; p-ISSN: 20485170; December, 2020: Vol. 5 No. 3 pp. 905 – 909

906

6. System maintenance: it's the modification of a system to

correct faults to boost performance, or customise it to an

adjusted setting or modified needs. Once the application is

being utilised by the client, the day-to-day challenges

manifest, which will require regular attention

(Yeddanapudi et al., 2008).

Software process models adopted by organisations

Several software development paradigms exist but some

known ones include:

Build and fix model (ad hoc model) The product is created

with no requirement and structure. An ad-hoc approach which

is not well defined is utilized by the programmer (Davis et al,

1988). A preliminary artefact is constructed, and then adjusted

till it fulfills its purpose. The model is not organized and no

prior planning is established before the software development.

Waterfall model This is the oldest SDLC paradigm in use for

application development. It is a sequential development

concept (Weisert, 2003). Fig. 1 is a pictorial representation of

the application paradigm. Commencement of a stage in this

paradigm implies the completion of, and no association with,

the preceding stage.

Fig. 1: Waterfall model

Prototyping model An early sample or model built to test a

concept or process is called a prototype (Blackwell et al.,

2015). Prototyping allows customers opportunity to evaluate

the application developer’s first-hand understanding of the

application’s requirements with a chance to try out some of its

features prior to its full implementation. It is a miniature

representative software having limited functionality. The

prototype is not reflective of the actual logic used by the final

software and is an extra drive factored into effort valuation.

Fig. 2 shows the prototype model work flow.

Fig. 2: Prototyping model

There exists a loop in the sequence of operation of

prototyping model. The refined prototype can finally be

adopted by the engineer it enters the quick design phase.

Incremental model This model is best for when a customer

want some changes in the product (Craig et al., 2003). Fig. 3

shows the incremental representation which starts out on a

modest execution of a lesser part of the application

specification, repetitively improving developing version till

the total framework is actualized as well as fit distribution

and installation. This representation never starts out on a

detailed description of design requirement. Rather,

advancement begins via introduction and executing parts that

make up the application, that are later looked into for

recognition of additional requests.

Fig. 3: Iterative/incremental model

Spiral model This representation combines likelihood of

repetitive execution advancement with systematic, well-

ordered portions featured in the sequential representation,

allowing gradual product release or gradual refinement via the

cycles within the enclosing helical curve. Each traversal

performed by the spiral usually produces a deliverable

outcome of the project. Fig. 4 shows the Spiral model.

Generally, this representation endeavours uniting essential

elements in selected notable paradigms (in particular,

waterfall, incremental, as well as prototyping) with the

purpose of featuring the best characteristics inherent in every

one, since particular applications may be pretty much versatile

to particular paradigms (Aggarwal and Yogesh, 2007).

Fig. 4: Spiral model

Agile model Fig. 5 describes the Agile representation as

amalgam of iterative and incremental procedures whose pivots

centre around task flexibility with consumer fulfillment

http://www.ftstjournal.com/

A Survey of Software Engineering Models

FUW Trends in Science & Technology Journal, www.ftstjournal.com

e-ISSN: 24085162; p-ISSN: 20485170; December, 2020: Vol. 5 No. 3 pp. 905 – 909

907

through quick provision of functional application. This

method breaks the application to lesser gradual constructions

(Cohen, 2003). This paradigm is characterised by a group that

is adjustable and imbued with ability able to cope with

dynamic requests (Marti, 1999).

Fig. 5: Agile model

Rapid application development (RAD) RAD paradigm

fuses prototyping and iterative advancements without specific

designing involved. During the developmental stage, the

knowledge gained can be used to produce a preferred solution

(Brooks et al., 1986). An approach to creating the application

entails the planning necessary in structuring the application.

Fig. 6 shows the RAD paradigm flow.

Fig. 6: RAD model

Comparison of the SDLC models

Table 1 depicts the comparison of the SDLC models

emphasising their strengths, weaknesses, types of projects

best used for and the project examples.

Table 1: Models strengths, weakness, project types and example of the project
SDLC paradigm Merits Demerits Scenario of projects

Sequential
Paradigm

1. Expanded documentation is
done at each period of the

product's advancement cycle

2. There is simplicity and ease
in the usage of the model.

3. It is in line with many

innovative customs
4. It reduces preparation

burdens.

1. Result delivery is late in the
developmental cycle.

2. The model doesn't bolster

iteration and it is firm.
3. Errors/changes in the completed

work are difficult to debug in this

model
4. The user feedbacks are not taken

during development.

1. Relatively fixed specifications
2. Simple and moderate application

3. Environment is stable

4. Resources are available and trained like
Design for small company websites,

Governmental projects, Healthcare

projects etc.

Iterative /
Incremental

Model

1. It saves time as software is
created rapidly.

2. This model is manageable

and inexpensive in altering

specification and depth of

coverage.

3. User feedbacks are
supported.

4. Amenable to alterations all

through the phases of
application creation

5. Accommodates client’s

reaction to every partial
construction

1. This model has stages that are
inflexible and do not overlap.

2. Problem related to system

architecture in future iteration

may occur.

3. The paradigm demands effective

preparation as well as designing.

1. Application specifications unambiguously
comprehended.

2. Need for short turnaround time for

application delivery.

3. If application developers are amateurs or

unskilled.

4. If application contains great premium
characteristics as well as targets.

For projects like Enterprise applications

such as micro services or web services,
Electronic commerce website or Portal.

Agile Model

1. There is great manageability

in job handling.
2. There is great client

fulfilment concerning the

creation procedure
3. Continuous communication

amid the participants.

4. Constant assessment of

specifications with

requirements, devotion to

specifics.

1. Task completion sequences are

difficult to harmonise and
manage.

2. Challenging preparation during

initial phases.
3. Professional teams are very

important for decision making.

4. Absence of extensive preparation.

1. Fair sized activities in custom

programming advancement where
business requirements cannot be translated

into software requirements.

2. Large projects divided into small
functional parts. For Large and

complicated or unclear projects like

building a social network.

http://www.ftstjournal.com/

A Survey of Software Engineering Models

FUW Trends in Science & Technology Journal, www.ftstjournal.com

e-ISSN: 24085162; p-ISSN: 20485170; December, 2020: Vol. 5 No. 3 pp. 905 – 909

908

SDLC paradigm Merits Demerits Scenario of projects

Build and Fix

Model

1. This model requires little

coding experience from the
developer

2. The model is good for small

projects
3. The model requires little or

no planning

1. There is no valid quality and

progress control.
2. The model takes time and high

cost is incurred.

3. The software design is informal.
4. The maintenance is complicated

as there is no proper planning

1. Mini projects and programming exercises

such as proof of concept, demos and
software prototypes.

Prototyping 1. In this model, clients keenly
participate in application

creation.

2. Omitted tasks and functions
are easily highlighted, thus

aiding a decrease in the

likelihood of
disappointment.

3. Helps team member to

communicate effectively
4. Client fulfillment is

guaranteed since the

application may be
experienced from the onset.

5. The model encourages

innovation and flexible
designing.

1. The paradigm takes a gradual as
well as protracted procedure

2. Prototypes developed are mostly

thrown away.
3. The model is prone to errors

4. Defective operational guide due to

variations in user specifications.

1. When there are uncertainties in
requirements.

2. For projects like Website development

and web application development such as
social media.

Evolutionary

Model

1. It encourages you to spare

time and effort
2. The client can explore the

framework to improve the

requirements the
requirements

3. Customer’s feedback is

supported

1. Embodies greater premiums,

hence, effective supervision and
control very essential.

2. The paradigm is employed as alibi

for security control to evade
recording the requirements or

style, even though they're well

understood.

1. The paradigm is useful where an

application utilises unfamiliar novel
innovation.

2. Utilised in a multifaceted application

whose working order needs immediate
verification

3. It is helpful when the requirement is not

stable or not understood clearly at the
initial stage like Resource management

projects of all kinds.

Spiral Model 1. Further modifications may

be effected in a further

phase.

2. Price valuation is straight

forward because model
construction completes in

piecemeal

3. It reduces likelihood of
failure from the onset thus

avoiding possible

breakdown.
4. Client reaction is

incorporated into the design

procedure.

1. Usually applied to lesser

applications in view of

development overhead expenses.

2. Probability of failed completion

deadline or exorbitant
development cost. Failure in the

absence of listening and effective

supervision and control.

1. When releases are required to be frequent

2. If assessment of likelihood of failure as

well as budgets are essential

3. For moderate to greater premium

applications
4. For specifications that are ambiguous and

intricate

5. If unscheduled alterations must be
accommodated whenever.

6. If extended assurance of application is

unrealistic because of vagaries in
monetary exigencies like Research and

development projects, large and

complicated projects (unclear projects or
websites).

Extreme Model

1. The model saves cost and

time.
2. It is very simple to build

3. Encourages transparent,

explainable as well as

traceable procedures

4. Constant feedback is also

supported and this yield to
better customer satisfaction.

1. The model concentrates on

programming in contrast to
blueprint.

2. It falls short of programming

standard assessment

3. It is not a good practice when

programmers are separated

geographically.

1. Prerequisites for the entire structure

usually unidentified at the outset
2 Producing simple application.

3. Designers and programmers are closer to

one another. For building responsive

websites like social network, e-commerce

websites.

RAD

(Rapid
Application

Development)

model

1. Amenable as well as

adjustable to accommodate
alterations.

2. The model becomes handy

for lessening general
likelihood of application

failure

3. Encourages rapid early
appraisals.

4. Enhances client feedback.

5. With less individuals,
productivity are often

increased in short time

1. Requires effective group as well

as personal feats in recognising
corporate prerequisites.

2. Especially suitable for

constructing adaptable
applications.

3. Necessitates the use of seasoned

professional programmers.
4. Greatly relied on modelling

abilities.

5. Shorter completion deadline may
trigger crisis

1. When anapplication must be created

relatively quickly.
2. If application prerequisites are well-

understood.

3. If client participation is assured during the
entire stages of application development.

4. When technical risk is less

5. When a budget is high enough. For
projects like Employee management

system, purchase order projects, and so on.

http://www.ftstjournal.com/

A Survey of Software Engineering Models

FUW Trends in Science & Technology Journal, www.ftstjournal.com

e-ISSN: 24085162; p-ISSN: 20485170; December, 2020: Vol. 5 No. 3 pp. 905 – 909

909

Table 2: Features and recommendation model

Features Recommended model

i. Reliability Spiral, Iterative/Incremental, Agile

ii. Stable funds Waterfall, Prototyping, Iterative/Incremental, Spiral, RAD, Evolutionary, Extreme, build

and fix

iii. Tight project schedule Prototyping, Spiral, Iterative/Incremental, Evolutionary, Extreme, RAD.

iv. Scarcity of resources Prototyping, Spiral, Iterative/Incremental, Evolutionary, Extreme, Agile.

v. Changes in requirements Prototyping, Spiral, Iterative/Incremental, Agile.

vi. Limited user involvement Waterfall, Spiral

vii. Constant feedbacks from users Prototyping, Iterative/Incremental, RAD, Evolutionary, Extreme, Agile, Build and fix.

viii. Little experience Build and fix.

Basic criteria for selecting a software development model

A proper comprehension of an application’s prerequisites with

regard to scope, intricacy, accessible monetary resources risks

involved, etc. constitutes a major highlight in choosing a

paradigm. Table 2 depicts the features and recommendations

for selecting particular model to be used for software

development.

Summary and Conclusion

Selecting a model for software development project seems to

be a challenging task due to the various pros and cons. This

paper focused on the major and widely used models; their

strengths, weaknesses, application areas, so that developers

would be able to select a better model best fit for project of

choice.

This paper focused on some basic criteria. Other criteria in

relation to various application domains (such as medical

sector, banking sector, educational sector) can also be

considered as various domain has its own requirements and

functionalities.

Conflict of Interest

Authors have declared that there is no conflict of interest

reported in this work.

References

Akbar MA, Sang J, Khan AA, Shafiq M, Hussain S, Hu H &

Xiang H 2017. Improving the quality of software

development process by introducing a new methodology-

AZ-model. IEEE Access, 6: 4811-4823.

Blackwell AH & Manar E 2015. Prototype. UXL

Encyclopedia of Science (3rd ed.).

Brooks Fred 1986. Kugler HJ (ed.). No Silver Bullet Essence

and Accidents of Software Engineering (PDF).

Information Processing 86. Elsevier Science Publishers

B.V (North-Holland). ISBN 0-444-70077-3.

Carzaniga A, Fuggetta A, Hall RS, Heimbigner D, Van Der

Hoek A & Wolf AL 1998. A characterization framework

for software deployment technologies: Colorado State

Univ Fort Collins Dept of Computer Science.

Craig Layman & Victor Basili 2003. Iterative and Incremental

Development: A Brief History. IEEE Computer.

Davis M, Bersoff H & Comer ER 1988. A strategy for

comparing alternative software development life cycle

models. J. IEEE Transac. on Software Engr., 14: 10.

Dolstra E 2006. The Purely Functional Software Deployment

Model. Utrecht University.

Howden WE 1987. Functional Program Testing and Analysis

(Vol. 2): McGraw-Hill New York, NY.

Jacobson I, Ng PW, McMahon PE, Spence I & Lidman S

2012. The essence of software engineering: the SEMAT

kernel. Communications of the ACM, 55(12): 42-49.

Jacobson I & Stimson R 2017. Escaping method prison–On

the road to real software engineering. Springer, Cham,

The Essence of Software Engineering, pp. 37-58.

Jalote P 2012. An Integrated Approach to Software

Engineering. Springer Science & Business Media.

Joslin R & Müller R 2016. The impact of project

methodologies on project success in different project

environments. Int. J. Managing Projects in Bus.

Mall R 2018. Fundamentals of Software Engineering. PHI

Learning Pvt. Ltd.

Yeddanapudi SRK, Li Y, McCalley JD, Chowdhury AA &

Jewell WT 2008. Risk-based allocation of distribution

system maintenance resources. IEEE Transac. on Power

Syst., 23(2): 287-295.

http://www.ftstjournal.com/
http://ic.galegroup.com/ic/scic/ReferenceDetailsPage/ReferenceDetailsWindow?failOverType=&query=&prodId=SCIC&windowstate=normal&contentModules=&display-query=&mode=view&displayGroupName=Reference&limiter=&currPage=&disableHighlighting=false&displayGroups=&sortBy=&search_within_results=&p=SCIC&action=e&catId=&activityType=&scanId=&documentId=GALE%7CENKDZQ347975681&source=Bookmark&u=dclib_main&jsid=63ed7b4b8ba090d7346c2d926005d307
http://www.sci.brooklyn.cuny.edu/~sklar/teaching/s10/cis20.2/papers/brooks-no-silver-bullet.pdf
http://www.sci.brooklyn.cuny.edu/~sklar/teaching/s10/cis20.2/papers/brooks-no-silver-bullet.pdf
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/0-444-70077-3

